A Quiver Presentation for Solomon ’ S Descent Algebra
نویسنده
چکیده
The descent algebra Σ(W) is a subalgebra of the group algebra QW of a finite Coxeter group W, which supports a homomorphism with nilpotent kernel and commutative image in the character ring of W. Thus Σ(W) is a basic algebra, and as such it has a presentation as a quiver with relations. Here we construct Σ(W) as a quotient of a subalgebra of the path algebra of the Hasse diagram of the Boolean lattice of all subsets of S, the set of simple reflections in W. From this construction we obtain some general information about the quiver of Σ(W) and an algorithm for the construction of a quiver presentation for the descent algebra Σ(W) of any given finite Coxeter group W.
منابع مشابه
A Quiver Presentation for Solomon ’
The descent algebra Σ(W) is a subalgebra of the group algebra QW of a finite Coxeter group W, which supports a homomorphism with nilpotent kernel and commutative image in the character ring of W. Thus Σ(W) is a basic algebra, and as such it has a presentation as a quiver with relations. Here we construct Σ(W) as a quotient of a subalgebra of the path algebra of the Hasse diagram of the Boolean ...
متن کاملOn the Quiver of the Descent Algebra
Using a result of T. P. Bidigare [Bidigare, 1997], we identity the descent algebra Σk(W ) (over a field k) of a finite Coxeter group W with a subalgebra of kF , an algebra built from the hyperplane arrangement associated to W . Specifically, Σk(W ) is anti-isomorphic to the W -invariant subalgebra (kF) . We use this identification and results about kF to study Σk(W ). We construct a complete sy...
متن کاملThe module structure of the Solomon-Tits algebra of the symmetric group
Let (W,S) be a finite Coxeter system. Tits defined an associative product on the set Σ of simplices of the associated Coxeter complex. The corresponding semigroup algebra is the Solomon-Tits algebra of W . It contains the Solomon algebra of W as the algebra of invariants with respect to the natural action of W on Σ. For the symmetric group Sn, there is a 1-1 correspondence between Σ and the set...
متن کاملTHE LOEWY LENGTH OF THE DESCENT ALGEBRA OF D2m+1.
In this article the Loewy length of the descent algebra of D2m+1 is shown to be m + 2, for m ≥ 2, by providing an upper bound that agrees with the lower bound in [Bonnafé and Pfeiffer, 2006]. The bound is obtained by showing that the length of the longest path in the quiver of the descent algebra of D2m+1 is at most m+1. To achieve this bound, the geometric approach to the descent algebra is us...
متن کاملar X iv : m at h . R A / 0 20 50 34 v 1 3 M ay 2 00 2 REPRESENTATIONS OF ALGEBRAS AS UNIVERSAL LOCALIZATIONS
Given a presentation of a finitely presented group, there is a natural way to represent the group as the fundamental group of a 2-complex. The first part of this paper demonstrates one possible way to represent a finitely presented algebra S in a similarly compact form. From a presentation of the algebra, we construct a quiver with relations whose path algebra is finite dimensional. When we adj...
متن کامل